
smock

DeFi Wonderland

Jun 22, 2023





DEVELOPER DOCS

1 Documentation 3

2 Quick Start 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 License 7

4 Contributors 9
4.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Fakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Mocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Migrating from v1 to v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



ii



smock

Smock is the Solidity mocking library. It’s a plugin for hardhat that can be used to create mock Solidity contracts
entirely in JavaScript (or TypeScript!). With Smock, it’s easier than ever to test your smart contracts. You’ll never have
to write another mock contract in Solidity again.

Smock is inspired by sinon, sinon-chai, and Python’s unittest.mock. Although Smock is currently only compatible with
hardhat, we plan to extend support to other testing frameworks like Truffle.

If you wanna chat about the future of Solidity Mocking, join our Discord!

• Get rid of your folder of “mock” contracts and just use JavaScript.

• Keep your tests simple with a sweet set of chai matchers.

• Fully compatible with TypeScript and TypeChain.

• Manipulate the behavior of functions on the fly with fakes.

• Modify functions and internal variables of a real contract with mocks.

• Make assertions about calls, call arguments, and call counts.

• We’ve got extensive documentation and a complete test suite.

DEVELOPER DOCS 1

https://www.npmjs.org/package/@defi-wonderland/smock
https://discord.com/invite/22RQcJjau9
https://hardhat.org
https://sinonjs.org
https://www.chaijs.com/plugins/sinon-chai
https://docs.python.org/3/library/unittest.mock.html
https://hardhat.org
https://www.trufflesuite.com/
https://discord.com/invite/22RQcJjau9


smock

2 DEVELOPER DOCS



CHAPTER

ONE

DOCUMENTATION

Detailed documentation can be found here.

3

https://smock.readthedocs.io


smock

4 Chapter 1. Documentation



CHAPTER

TWO

QUICK START

2.1 Installation

You can install Smock via npm or yarn:

npm install @defi-wonderland/smock

2.2 Basic Usage

Smock is dead simple to use. Here’s a basic example of how you might use it to streamline your tests.

...
import { FakeContract, smock } from '@defi-wonderland/smock';

chai.should(); // if you like should syntax
chai.use(smock.matchers);

describe('MyContract', () => {
let myContractFake: FakeContract<MyContract>;

beforeEach(async () => {
...
myContractFake = await smock.fake('MyContract');

});

it('some test', () => {
myContractFake.bark.returns('woof');
...
myContractFake.bark.atCall(0).should.be.calledWith('Hello World');

});
});

5



smock

6 Chapter 2. Quick Start



CHAPTER

THREE

LICENSE

Smock is released under the MIT license. Feel free to use, modify, and/or redistribute this software as you see fit. See
the LICENSE file for more information.

7

https://github.com/defi-wonderland/smock/blob/main/LICENSE


smock

8 Chapter 3. License



CHAPTER

FOUR

CONTRIBUTORS

Maintained with love by Optimism PBC and DeFi Wonderland. Made possible by viewers like you.

4.1 Getting Started

4.1.1 Installation

yarn

yarn add --dev @defi-wonderland/smock

npm

npm install --save-dev @defi-wonderland/smock

4.1.2 Required Config for Mocks

Mocks allow you to manipulate any variable inside of a smart contract. If you’d like to use mocks, you must update
your hardhat.config.<js/ts> file to include the following:

JavaScript

// hardhat.config.js

... // your plugin imports and whatnot go here

module.exports = {
... // your other hardhat settings go here
solidity: {
... // your other Solidity settings go here
compilers: [
...// compiler options
settings: {
outputSelection: {
"*": {
"*": ["storageLayout"]

}
}

}
(continues on next page)

9

https://optimism.io
https://defi.sucks
./mocks.html


smock

(continued from previous page)

]
}

}

TypeScript

// hardhat.config.js

... // your plugin imports and whatnot go here

const config = {
... // your other hardhat settings go here
solidity: {
... // your other Solidity settings go here
compilers: [
...// compiler options
settings: {
outputSelection: {
"*": {
"*": ["storageLayout"]

}
}

}
]

}
}

export default config

4.1.3 Optional config to use Smock Matchers

4.2 Fakes

4.2.1 What are fakes?

Fakes are JavaScript objects that emulate the interface of a given Solidity contract. You can use fakes to customize the
behavior of any public method or variable that a smart contract exposes.

10 Chapter 4. Contributors



smock

4.2.2 When should I use a fake?

Fakes are a powerful tool when you want to test how a smart contract will interact with other contracts. Instead of
initializing a full-fledged smart contract to interact with, you can simply create a fake that can provide pre-programmed
responses.

Fakes are especially useful when the contracts that you need to interact with are relatively complex. For example,
imagine that you’re testing a contract that needs to interact with another (very stateful) contract. Without smock, you’ll
probably have to:

1. Deploy the contract you need to interact with.

2. Perform a series of transactions to get the contract into the relevant state.

3. Run the test.

4. Do this all over again for each test.

This is annoying, slow, and brittle. You might have to update a bunch of tests if the behavior of the other contract
ever changes. Developers usually end up using tricks like state snapshots and complex test fixtures to get around this
problem. Instead, you can use smock:

1. Create a fake.

2. Make your fake return the value you want it to return.

3. Run the test.

4.2.3 Using fakes

Initialization

Initialize with a contract name

const myFake = await smock.fake('MyContract');

Initialize with a contract ABI

const myFake = await smock.fake([ { ... } ]);

Initialize with a contract factory

const myContractFactory = await hre.ethers.getContractFactory('MyContract');
const myFake = await smock.fake(myContractFactory);

4.2. Fakes 11



smock

Initialize with a contract instance

const myContractFactory = await hre.ethers.getContractFactory('MyContract');
const myContract = await myContractFactory.deploy();
const myFake = await smock.fake(myContract);

Take full advantage of typescript and typechain

const myFake = await smock.fake<MyContract>('MyContract');

Options

await smock.fake('MyContract', { ... }); // how to use

// options
{
address?: string; // initialize fake at a specific address
provider?: Provider; // initialize fake with a custom provider

}

Signing transactions

Every fake comes with a wallet property in order to make easy to sign transactions

myContract.connect(myFake.wallet).doSomething();

Making a function return

Returning with the default value

myFake.myFunction.returns();

Returning a fixed value

myFake.myFunction.returns(42);

12 Chapter 4. Contributors



smock

Returning a struct

myFake.getStruct.returns({
valueA: 1234,
valueB: false,

});

Returning an array

myFake.myFunctionArray.returns([1, 2, 3]);

Returning a dynamic value

myFake.myFunction.returns(() => {
if (Math.random() < 0.5) {
return 0;

} else {
return 1;

}
});

Returning a value based on arguments

myFake.myFunction.whenCalledWith(123).returns(456);

await myFake.myFunction(123); // returns 456

Returning a value with custom logic

myFake.getDynamicInput.returns(arg1 => arg1 * 10);

await myFake.getDynamicInput(123); // returns 1230

Returning at a specific call count

myFake.myFunction.returnsAtCall(0, 5678);
myFake.myFunction.returnsAtCall(1, 1234);

await myFake.myFunction(); // returns 5678
await myFake.myFunction(); // returns 1234

4.2. Fakes 13



smock

Making a function revert

Reverting with no data

myFake.myFunction.reverts();

Reverting with a string message

myFake.myFunction.reverts('Something went wrong');

Reverting with bytes data

myFake.myFunction.reverts('0x12341234');

Reverting at a specific call count

myFake.myFunction.returns(1234);
myFake.myFunction.revertsAtCall(1, 'Something went wrong');

await myFake.myFunction(); // returns 1234
await myFake.myFunction(); // reverts with 'Something went wrong'
await myFake.myFunction(); // returns 1234

Reverting based on arguments

myFake.myFunction.returns(1);
myFake.myFunction.whenCalledWith(123).reverts('Something went wrong');

await myFake.myFunction(); // returns 1
await myFake.myFunction(123); // reverts with 'Something went wrong'

Resetting function behavior

Resetting a function to original behavior

myFake.myFunction().reverts();

await myFake.myFunction(); // reverts

myFake.myFunction.reset(); // resets behavior for all inputs of the function

await myFake.myFunction(); // returns 0

14 Chapter 4. Contributors



smock

Asserting call count

Any number of calls

expect(myFake.myFunction).to.have.been.called;

Called once

expect(myFake.myFunction).to.have.been.calledOnce;

Called twice

expect(myFake.myFunction).to.have.been.calledTwice;

Called three times

expect(myFake.myFunction).to.have.been.calledThrice;

Called N times

expect(myFake.myFunction).to.have.callCount(123);

Asserting call arguments or value

Called with specific arguments

expect(myFake.myFunction).to.have.been.calledWith(123, true, 'abcd');

Called with struct arguments

expect(myFake.myFunction).to.have.been.calledWith({
myData: [1, 2, 3, 4],
myNestedStruct: {
otherValue: 5678

}
});

4.2. Fakes 15



smock

Called at a specific call index with arguments

expect(myFake.myFunction.atCall(2)).to.have.been.calledWith(1234, false);

Called once with specific arguments

expect(myFake.myFunction).to.have.been.calledOnceWith(1234, false);

Called with an specific call value

expect(myFake.myFunction).to.have.been.calledWithValue(1234);

Asserting call order

Called before other function

expect(myFake.myFunction).to.have.been.calledBefore(myFake.myOtherFunction);

Called after other function

expect(myFake.myFunction).to.have.been.calledAfter(myFake.myOtherFunction);

Called immediately before other function

expect(myFake.myFunction).to.have.been.calledImmediatelyBefore(myFake.myOtherFunction);

Called immediately after other function

expect(myFake.myFunction).to.have.been.calledImmediatelyAfter(myFake.myOtherFunction);

Querying call arguments

Getting arguments at a specific call index

expect(myFake.myFunction.getCall(0).args[0]).to.be.gt(50);

16 Chapter 4. Contributors



smock

Getting call value at a specific call index

expect(myFake.myFunction.getCall(0).value).to.eq(1);

Manipulating fallback functions

Modifying the fallback function

myFake.fallback.returns();

Modifying the receive function

myFake.receive.returns();

Delegated calls

Calls to a contract function via delegated calls do behave the same as a regular call, so you can enforce a return value,
assert the calls details, etc. . . In addition, you also have custom assertions for delegated calls.

Assert delegated caller

expect(myFake.myFunction).to.be.delegatedFrom(myProxy.address);

4.3 Mocks

4.3.1 What are mocks?

Mocks are extensions to smart contracts that have all of the functionality of a fake with some extra goodies. Behind
every mock is a real smart contract (with actual Solidity code!) of your choosing. You can modify the behavior of
functions like a fake, or you can leave the functions alone and calls will pass through to your actual contract code.
And, with a little bit of smock magic, you can even modify the value of variables within your contract!

4.3.2 When should I use a mock?

Generally speaking, mocks are more advanced versions of fakes. Mocks are most effectively used when you need some
behavior of a real smart contract but still want the ability to modify things on the fly.

One powerful feature of a mock is that you can modify the value of variables within the smart contract. You could, for
example, use this feature to test the behavior of a function that changes behavior depending on the value of a variable.

4.3. Mocks 17

./fakes.html
./fakes.html


smock

4.3.3 Using mocks

Initialization

Initialize with a contract name

const myContractFactory = await smock.mock('MyContract');
const myContract = await myContractFactory.deploy(...);

Take full advantage of typescript and typechain

await smock.mock<MyContract__factory>('MyContract');

Options

await smock.mock('MyContract', { ... }); // how to use

// options
{
provider?: Provider; // initialize mock with a custom provider

}

Using features of fakes

Mocks can use any feature available to fakes. See the documentation of fakes for more information.

Call through

Calls go through to contract by default

await myMock.add(10);
await myMock.count(); // returns 10

myMock.count.returns(1);
await myMock.count(); // returns 1

Manipulating variables

Warning: This is an experimental feature and it is subject to API changes in the near future

Setting the value of a variable

18 Chapter 4. Contributors

./fakes.html


smock

await myMock.setVariable('myVariableName', 1234);

Setting the value of a struct

await myMock.setVariable('myStruct', {
valueA: 1234,
valueB: true,

});

Setting the value of a mapping (won’t affect other keys)

await myMock.setVariable('myMapping', {
myKey: 1234

});

Setting the value of a nested mapping

await myMock.setVariable('myMapping', {
myChildMapping: {
myKey: 1234

}
});

Setting the value of multiple variables

await myMock.setVariables({
myVariableName1: 123,
myVariableName2: true,
myStruct: {
valueA: 1234,
valueB: false,

},
myMapping: {
[myKey]: 1234

}
})

4.3. Mocks 19



smock

Getting the value of an internal variable

Warning: This is an experimental feature and it does not support multidimensional or packed arrays

const myUint256 = await myMock.getVariable('myUint256VariableName');

Getting the value of an internal mapping given the value’s key

const myMappingValue = await myMock.getVariable('myMappingVariableName', [mappingKey]);

Getting the value of an internal nested mapping given the value’s keys

const myMappingValue = await myMock.getVariable('myMappingVariableName', [mappingKeyA,␣
→˓mappingKeyB]);

4.4 Development

4.4.1 Code

Open an issue or a PR, we will try to see it asap.

4.4.2 Docs

In order to continue developing the docs, you will first need to install the needed dependencies locally by running:

yarn

yarn docs:install

npm

npm run docs:install

Then you can run the sphinx autobuild to see your changes live:

yarn

yarn docs:watch

npm

npm run docs:watch

20 Chapter 4. Contributors



smock

4.5 Migrating from v1 to v2

DeFi Wonderland and Optimism have decided to join forces with our shady-super-coder’s magic to launch a new and
improved version of the mocking library you

We know the breaking changes on the API will make you do some leg work, but we promise it is going to be totally
worth it!

Also, special thanks to the Optimism team for recognizing our work and allowing us to host the new library on our
Github organization (this marks our first public release )

Smock V2 focuses mainly on:

• API improvements

• Call arguments expectations

• Custom chai matchers

• Type extensions with generics

• Fakes and Mocks division

• Documentation

4.5.1 Before upgrading

If using Typescript, we highly recommend using Typechain in order to take full advantage of the type extensions we
provide. If you decide not to, you can still follow along by using the type Contract from ethers or any.

With Typechain:

import { FakeContract } from '@defi-wonderland/smock';
import { CookieEater } from '@typechained';

let cookieEater: FakeContract<CookieEater>; // will extend all of the CookieEater method␣
→˓types

Without Typechain:

import { FakeContract } from '@defi-wonderland/smock';
import { Contract } from 'ethers';

let cookieEater: FakeContract<Contract>; // will extend all of the CookieEater method␣
→˓types

4.5. Migrating from v1 to v2 21

https://github.com/defi-wonderland
https://github.com/ethereum-optimism
https://github.com/ethereum-ts/TypeChain


smock

4.5.2 Installation

Uninstall the old package

yarn

yarn remove @eth-optimism/smock

npm

npm uninstall @eth-optimism/smock

Install the new one

yarn

yarn add --dev @defi-wonderland/smock

npm

npm install --save-dev @defi-wonderland/smock

4.5.3 New concepts

Instead of having Mock and Smod objects, now we use Fakes and Mocks.

• Fakes are empty contracts that emulate a given interface.
All of their functions can be watched and pre-programmed. When calling a function of a fake, by default, it will
return the return type zero-state.

• Mocks are deployed contract wrappers that have all of the fake’s functionality and even more.
Because they are actually deployed contract, they can have actual logic inside that can be called through. And
because they have a storage, internal variable values can be overwritten

4.5.4 API changes

Smockit initialization

Before:

import { ethers } from 'hardhat';
import { smockit } from '@eth-optimism/smock';

const myContractFactory = await ethers.getContractFactory('MyContract');
const myContract = await myContractFactory.deploy(...);
const myMockContract = await smockit(myContract);

After:

22 Chapter 4. Contributors



smock

import { smock } from '@defi-wonderland/smock';
import { MyContract } from '@typechained';

const myFakeContract = await smock.fake<MyContract>('MyContract');

Returns

Before:

myMockContract.smocked.myFunction.will.return.with('Some return value!');

After:

myFakeContract.myFunction.returns('Some return value!');

Asserting call count

Before:

expect(myMockContract.smocked.myFunction.calls.length).to.equal(1);

After:

expect(myFakeContract.myFunction).to.be.calledOnce;

Asserting call data

Before:

expect(MyMockContract.smocked.myFunction.calls.length).to.equal(1);
expect(MyMockContract.smocked.myFunction.calls[0]).to.deep.equal(['Something', 123]);

After:

expect(myFakeContract.myFunction).to.be.calledOnceWith('Something', 123);

Reverting

Before:

myMockContract.smocked.myFunction.will.revert();
myMockContract.smocked.myOtherFunction.will.revert.with('Some error');

After:

myFakeContract.myFunction.reverts();
myFakeContract.myOtherFunction.reverts('Some error');

4.5. Migrating from v1 to v2 23



smock

Creating a modifiable contract

Before:

import { ethers } from 'hardhat';
import { smoddit } from '@eth-optimism/smock';

const myModifiableContractFactory = await smoddit('MyContract');
const myModifiableContract = await MyModifiableContractFactory.deploy(...);

After:

import { MyContract } from '@typechained';
import { MockContract, MockContractFactory, smock } from '@defi-wonderland/smock';

const myMockContractFactory: MockContractFactory<MyContract> = await smock.mock(
→˓'MyContract');
const myMockContract: MockContract<MyContract> = await myMockContractFactory.deploy(...);

Modifying a contract variable value

Before:

await myModifiableContract.smodify.put({
_myInternalVariable: 1234

});

After:

await myMockContract.setVariable('_myInternalVariable', 1234);

4.5.5 And more. . .

Smock V2 contains plenty of new features, you can check them all out in the docs!

24 Chapter 4. Contributors


	Documentation
	Quick Start
	Installation
	Basic Usage

	License
	Contributors
	Getting Started
	Installation
	Required Config for Mocks
	Optional config to use Smock Matchers

	Fakes
	What are fakes?
	When should I use a fake?
	Using fakes
	Initialization
	Initialize with a contract name
	Initialize with a contract ABI
	Initialize with a contract factory
	Initialize with a contract instance
	Take full advantage of typescript and typechain
	Options

	Signing transactions
	Making a function return
	Returning with the default value
	Returning a fixed value
	Returning a struct
	Returning an array
	Returning a dynamic value
	Returning a value based on arguments
	Returning a value with custom logic
	Returning at a specific call count

	Making a function revert
	Reverting with no data
	Reverting with a string message
	Reverting with bytes data
	Reverting at a specific call count
	Reverting based on arguments

	Resetting function behavior
	Resetting a function to original behavior

	Asserting call count
	Any number of calls
	Called once
	Called twice
	Called three times
	Called N times

	Asserting call arguments or value
	Called with specific arguments
	Called with struct arguments
	Called at a specific call index with arguments
	Called once with specific arguments
	Called with an specific call value

	Asserting call order
	Called before other function
	Called after other function
	Called immediately before other function
	Called immediately after other function

	Querying call arguments
	Getting arguments at a specific call index
	Getting call value at a specific call index

	Manipulating fallback functions
	Modifying the fallback function
	Modifying the receive function

	Delegated calls
	Assert delegated caller



	Mocks
	What are mocks?
	When should I use a mock?
	Using mocks
	Initialization
	Initialize with a contract name
	Take full advantage of typescript and typechain
	Options

	Using features of fakes
	Call through
	Calls go through to contract by default

	Manipulating variables
	Setting the value of a variable
	Setting the value of a struct
	Setting the value of a mapping (won’t affect other keys)
	Setting the value of a nested mapping
	Setting the value of multiple variables

	Getting the value of an internal variable
	Getting the value of an internal mapping given the value’s key
	Getting the value of an internal nested mapping given the value’s keys



	Development
	Code
	Docs

	Migrating from v1 to v2
	Before upgrading
	Installation
	New concepts
	API changes
	Smockit initialization
	Returns
	Asserting call count
	Asserting call data
	Reverting
	Creating a modifiable contract
	Modifying a contract variable value

	And more…



